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Amsterdam, The Netherlands 
$ Mathematics Department, University of Melbourne, Parkville, Victoria 3052, Australia 

Received 12 June 1995 

Abstract We pesent a Baxterization of a two-&lour generalization of the Birman-Wen& 
Murakami (BWM) algebra Appropriately combining two -0s-type representations of the 
ordinary BWM alzebra, we consmct representations of the two-colour algebra Using the 
Baxterization, this provides new nsos-type solutions to the Yang-Baxter equation. 

1. Introduction 

Since the work of Baxter [l], the full relevance of the Yang-Baxter equation (YBE) in 
the theory of two-dimensional solvable lattice models has been realized. Among the 
several algebraic techniques used to construct solutions to the YBE, a particularly interesting 
approach is based on braid-monoid algebras [Z]. This method amounts to reducing the 
problem of finding representations of the Yang-Baxter algebra (YBA)  to^ that of finding 
representations of certain types of braid-monoid algebras, through a procedure called 
Barterizafion [3]. Some examples of braid-monoid algebras for which a Baxterization 
is known are the Temperley-Lieb algebra [4], the Birman-Wenzl-Murakami (BWM) algebra 
[5, 61 and their dilute generalizations [7-91. 

In [lo], solvable lattice models related to a two-colour generalization of the Temper- 
ley-Lieb algebra were found. This has motivated our attempt to also find a Baxterization 
of a two-colour generalization of the BWM algebra. 

We first give a short definition of the two- 
colour braid-monoid algebra, which, apart from a small simplification, coincides with the 
general definition of [I l l .  From this the two-colour BWM algebra is obtained by imposing 
polynomial reduction relations on the generators. In section 3, we present a Baxterization 
of the two-colour BWM algebra and relate it to the dilute BWM [9,12-141 and the two- 
colour Temperley-Lieb case [lo]. Subsequently, in section 4, we construct RSOS-type 
representations of the two-colour algebra. This leads to new RSOS-type representations of 
the Yang-Baxter algebra and hence to new solvable lattice models. Finally, we summarize 
and discuss our results in section 5. 

This paper is organized as follows. 

5 E-mail address: grimm@phys.uva.nl 
11 E-mail address: wmaar@maths.mu.oz.au 
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2. The two-colour BW algebra 

We commence by defining a two-colour~braid-monoid algebra following [ll]. It is generated 
by the following set of operators: 

U Grimm and S 0 Warnaar 

P,!cC') (projectors) 

b*.(c.c) I ' I  b < C . 3  (braids) 

ej ( C . C  (Temperley-Lieb operators) 

where j = 1,2,. . . , N - 1 and N is some number. Here c. E (1.2) label the two 
colours, and E = 3 - c. Furthermore, we have central elements a and w, associated to 
each colour. The algebra is defined by imposing a number of relations discussed below. 
However, let us first give a graphical interpretation of the generators to motivate the defining 
relations. 

We view the generators (2.1) as acting on a set of N strings labelled by j = 1,2, . . . , N ,  
with non-trivial action at positions j and j+l only. Multiplication in the algebra corresponds 
to concatenation of the respective diagrams. At each position, we initially have a 'white' 
(or 'colourless') string corresponding to the identity Z in the algebra. Hence any of the 
generators (2.1 selects particular colours for the strings at positions j and j + 1. In 
particular, p p  ) IS interpreted as doing just this-it creates a string of colour c at position 
j and a string of colour c' at  position^ j + 1. More precisely, the p y '  are required to 
satisfy 

J . .  

(2.2) 

and hence are orthogonal projectors. The non-trivial part of these and the remaining 
generators can be represented by the following diagrams: 

(C".C"') (C.C') = ( r e ' )  p p d )  = z Pj Pj C.? ?.d'.Pj 
C.? 

Note that our set of generators is, in fact, smaller than that of [ 1 I] since we do not distin [ish 
between over- and undercrossing for strings of different colour. Nevertheless, for the ake 
of brevity we also use a unified notation for the braids by setting by' = b'p' = i y) 
for the corresponding generators. 

Now, we demand that any two diagrams which can be deformed into each other by 
continuous deformations of strings correspond to the same element in the algebra, apart 
from certain factors carried by so-called 'twists' and by closed loops. In particular, any 
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diagram where colours do not match corresponds to the zero element of the algebra. This 
yields a number of obvious compatibility relations between the generators (2.1) acting at 
the same or at neighbouring positions (see [ 11 J for a more formal treatment). Also, any two 
generators acting at positions j and k with I j - kj > 2 trivially commute. Besides these, 
one has numerous relations, for which a sufficient (though not minimal) subset is given by 
the following three lists. The first consists of the braid relations 

for the coloured braids. The second contains the Temperley-Lieb relations 

(2.4) 

and finally we have the braid-monoid relations 

Equations (2.4)-(2.6) are just the relations one obtains by considering all possible 'two- 
colourings' of the diagrams corresponding to the relations defining the usual (one-colour) 
braid-monoid algebra 121. 

Finally, the two-colour braid-monoid algebra defined above becomes a two-colour BWM 
algebra if both one-colour subalgebras are of BWM type [5, 61. This means that the braids 
satisfy the cubic reduction relations 

and the Temperley-Lieb generators ey) are given by quadratic expressions in the braids 
as follows: 

Here qc is related to ./& and o, by 

wc - wc-' 

q c  - 4 2  
& = I +  

as follows from (2.5), (2.7) and (2.8) 
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3. Baxterization 

We are interested in constructing solutions of the YBE based on representations of 
the two-colour BWM algebra. To this end, we introduce local face operators Xj(u) ,  
j = 1, . . . , N - 1, which depend on the spectral parameter U .  We want the face operators 
to generate a Yang-Barter algebra (mA). That is, the face operators Xj(u)  satisfy the YBE 

U Grimm and S 0 Warnaar 

X j b )  Xj+I(u + U) X j ( V )  = Xj+1(U)Xj(u + U) X j + l f U )  (3.1) 

Xj(u)Xk(u)=Xk(u)Xj (u)  for l j - k 1 > 2 .  (3.2) 

and the commutation relations 

3.1. Two-colour BWM algebra 

In order to Baxterize the two-colour BWM algebra, let us consider a quotient of the two- 
colour algebra obtained by imposing the condition 

41 ‘ 4 2 ‘ 4 .  (3.3) 

However, we still allow W I  and W Z ,  and hence 
introduce A and q by 

and a, to take different values. We 

(3.4) e-2i?i - zn - - 4  - - I @ .  
- - - 4  

Then the defining relations of the two-colour B\YM algebra are sufficient to show that 

satisfies the defining relations (3.1), (3.2) of the YBA. Therefore, any representation of the 
two-colour BWM algebra with 41 = 42 gives rise to a solution of the YBE via equation (3.5). 
These solutions are crossing-symmetric with crossing parameter qA, and satisfy the inversion 
relation 

xj(u)Xj(-u)  = e (u )e ( -u ) I  (3.6) 

where the function @(U) takes the form 

sin(1 - U )  sin(g& - U )  

sin A sin nh Q(u) = (3.7) 

3.2. Dilute B W M  algebra 

A particularly interesting simplification occurs if we set w2 = CT with U’ = 1. By 
equation (2.9), this implies & = 1 and thus we can sum out the degrees of freedom 
associated with the second colour. To be precise, we get 

(3.8) b+y’ = b-!Z.” = CTe!2.z) - (2.2) 
I J - 0 P j  
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and graphically we can represent the generators (2.3) as in figure 1. These we recognize as 
the generators of the dilute BWM algebra [9,12-141. Using equation (3.Q the relations (2.2)- 
(2.9) indeed reduce to those of the dilute BWM algebra, and the Baxterization (3.5) becomes 

which coincides with the Baxtenzation of the dilute BWM algebra of [9,12-141. 

Figure 1. Graphical representation of the tio-colour BWM generators after ru&ing out the 
second colour. Generators which do not involve the second colour remain as in (2.3). 

3.3. Two-colour Temperley-Lieb algebra 

Another simplification worth mentioning occurs if we demand the additional reduction 
relation 

for both c = I and c = 2. Combining this with (2.8) yields the following quadratic equation 
for the braids: 

(3.11) 

Comparing with the cubic (2.7), we conclude that (3.10) is consistent with the two-colour 
BWM algebra provided 

-I ( e 4  b"C.C' 3 (C.C) - 0 (b+yC)-4 p j  )( + q  pj ) - . 

. .  
(3.12) 3 W l = u 2 = - q  . 
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By equation (3.4), this fixes q to be q = 3. Using both reduction relations (2.8) and (3.10), 
we can eliminate the braids b*p) from (3.5) to obtain 

U Grimm and S 0 Warnaar 

This is precisely the Baxterization of the two-colour Temperley-Lieb algebra of [lo]. 

4. Representations of the two-colour BWM algebra 

In this section we construct Rsos-type representations of the two-colour BWM algebra. 
Basically this amounts to appropriately combining two arbitrary RSOS-type representations 
of the ordinary BWM algebra. For these we take the representations labelled by the B,?, CAI) 
and DA') affine Lie algebras. found by Deguchi er al [15, 21. Our procedure is similar to 
the construction of representations of the dilute BWM algebra out of ordinary BWM algebra 
representations [12-141. All representations presented below have w2 jk &I. For RSOS 
representations of the dilute case of the two-colour BWM algebra we refer to [13, 141. The 
representations given below labelled by (C, C) with nl = nz = 1 satisfy (3.10) and therefore 
correspond to representations of the two-colour Temperley-Lieb algebra. For more general 
representations of this algebra we refer to [IO]. 

4.1. Represenration space 

To give our representations of the two-colour BWM algebra we first have to define our space 
of states. 

4.1.1. Local stares. First we define a local srare a. This is an (nl +nz)-dimensional vector 
", 

a =  ca;)G/@) 

( E / @ ) ,  E?) = 6i.j JC,6. 

e=1.2 i=l 

C) c-1.2 with { E :  ,,,_, n, a set of orthonormal vectors, 

The entries a/@) of a satisfy restrictions defined as follows. 

(i) Choose a pair (AI, A,) with A, = 5, C, D. 
(ii) Set 

L = fc(& 4- gc) (4.3) 

with e, E. Z,O fixed but arbitrary and with & and g, given in table 1. The integers 
nl and n2, labelling the dimension of a local state vector a, are also to be fixed, and, 
depending on the choice of A, must satisfy: n, > 2 if A, = B ,  n, > 1 if A, = C and 
n, > 3 if A, = D. 
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(iii) If A, = B: 
o < a$) . - - x a;) < af) 
a, (4 , . . . , a t )  E z or ay’, . ..,a$) E Z+ i .  

a1“,.:. , cl$) E iz . 

a y  +a;) c L, 

(4.4) 
I f A , = C :  

o < a$) < . . . < a;) <a?) < L J Z  

(4.5) 

I f & = D :  

0 < a$) < . . < a y  < af“ 0 < a$) fa::] a y  + a y  < L, 

a:),.. . . , a$) E z or a:’, . . . , a$) E z + f . (4.6) 
We remark that the symbols B ,  C and D used to label the different possible choices for 

A, reflect the underlying Lie algebraic structure. In particular, the sets [u,?}~:~ defined by 
(4.4)-(4.6) are in one-to-one correspondence with the level e,  dominant integral weights of 
the respective affine algebra (A):‘). 

I B 2n, - 1 1 n, - I ~ I sin(&) 
C n, + 1 2 n, + I -1 sin(hh,) 
D h , - 2  1 n , - I  I 1 

4.1.2. Admirsibililj rules. In the following it will be convenient to extend the subscript OF 
6f) by setting E, . Using this notation we define two local states a and b to be 
adjacent if a - b = 6;). for some & E (il, . . . , +nc], and some c E [ 1,2). If we draw the 
set of all local states as a collection of nodes, we can represent the adjacency of two nodes 
a and b graphically, by drawing a bond between a and b, see figure 2(a). 

We can now introduce the notion of a path as an ordered sequence of adjacent local 
states, i.e. a path is a sequence of the type 

(C) - - (4 - 

a ,  a + eh‘), a + e r ’  + E?), . . . , (4.7) 
with & E (il,. . . , i n*} ,  c’ E (1,2] and U E (2~1, .  . . , 2Znr,}, C” E [1,2], etc. Graphically 
one can think of a path as a sequence of steps along bonds connecting adjacent local states. 

= B ,  we further extend the subscript of 6f) by introducing the symbol 6:). In 
the (nl + nz)-dimensional space of local state vectors, 6:) corresponds to the zero vector. 
Hence, a + 6:) = a. If we extend our notion of a path by also allowing & = 0 if c’ = c and 
v = 0 if c” = c,  etc, in (4.7), we can represent the step from node a to node a + 6:) = a 
by a step along a tadpole, see figure 2(b). 

We wish for this rather clumsy graphical way of denoting the zero vector because we 
can have the situation (A] ,  Slz) = ( E ,  B) .  In this case we have both the symbols 6:) and 
6f). Although they both correspond to the zero vector in the local state space, we do have 
to distinguish a + 6:) and a +E:) .  With the previous graphical notation this can be made 
clear by drawing two tadpoles on a. see figure 2(c). A step ‘alon 6:) corresponds to a 
step from a to a along the tadpole labelled 1, and a step along €6 corresponds to a step 
from a to a along the tadpole labelled 2. 

If 
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i 1 G 
a b a 0 

Figure 2. (a )  Graphical representations of two adjacent local states a and b. (b) A tadpole 
representing a step from a to a+$' a. (e) Tadpoles representingsteps froma to off!) - a 
md a + @ = a ,  respectively. 

With the above we now define an admissible path ( a }  as a sequence of N + 2 local 

(4.8) 

states 

{ a )  = a ,  a + €21, a + €2) + €21, a + €2) + ~ ( ' 2 )  Irr + ~ ( ' 3 )  U,""- - - ao,al, .  . . , "1 
subject to the restrictions: 

(i) cj E 11.21. 
(ii) f i j  = { f l , .  ..,&,} if A ,  = C, D. 
(iii) f i j  = (0, & I , .  . . , k n , )  if A., = B ,  
(iv) f i j  # o if (a + €2) + . . . + ~2:;). e$;)) = 4. 
The space 'PN of all admissible paths {a} will be the representation space of our two-colour 
BWM algebra. 

4.2. Representations labelled by (AI, A2) 

Now that we have defined 'PN, we can give the actual matrix elements of our representations 
labelled by the pair (AI,  Ad. Since all the two-colour BWM generators act non-trivially at 
positions j and j + 1 only, we set 

(4.9) 

with Oj any of the operators in (2.1). 
We define two more variables 

c = l , 2  (4.10) 

with L, defined in (4.3) and with s, E Z arbitrary but coprime with L,. We then have 
representations of the two-colour BWM algebra with constants fixed by 

SCX 
hc = 

(4.11) 

and with non-zero matrix elements given by 

a + c,f) 

a + 6:c) 

p(c.c') 
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(4.12) 

(4.13) 

The functions h, and the constants uc and'?, in the above equations are listed in table 1. 
The proof that (4.9)-(4.13) indeed provide representations of the two-colour BWM 

algebra is straightforward. All relations in (2.4)-(2.8) which involve a single colour are 
satisfied because our representations are constructed ~ from representations of the original 
(one-colour) BWM algebra as given by Deguchi er a1 [U]. Any relation involving both 
colours holds trivially using the factorization property of the Temperley-Lieb operators 
e('.') and the simple form of the mixed braids b@,?) in (4.12). 
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4.3. Solvable RSOS models 

We now return to the Baxterization (3.5). From equation (3.31, we see that in order to 
obtain a solution of the YBE we require 

U Grimm and S 0 W a m r  

h l = h z = h  (4.14) 

for our representations of the two-colour algebra given in section 4.2. This in turn implies 
s l / L l  = sz/L2, see (4.10). Nevertheless, we still can use representations with different 
values of vC and U,, which determine the value of 4 in (3.5) by 

(4.15) 

as is easily seen from (3.4) and (4.11). For any such representation, equation (3.5) gives 
rise to a solvable lattice model of RSOS type. The Boltzmann weights 

d 

(4.16) 

b 
are given by the matrix elements of &e face operators [2] 

(4.17) 

To our knowledge, apart from the models labelled by (C, C) with n l  = nz = 1 [IO, 161 
these models are new. The corresponding adjacency graphs are given by products (in the 
sense of section 4) of the graphs underlying the EL1), Ci') and DA1) models of [17]. 

5. Discussion 

In this paper, we have constructed solvable RSOS models based on a two-colour 
generalization of the BWM algebra. In particular, we have presented a Baxterization of the 
two-colour algebra. This ensures that any suitable representation of the algebra gives rise 
to a solvable lattice model. Representations of the two-colour BWM algebra are constructed 
from any pair (AI, dz), where A, denotes an RSOS-type representation of the ordinary BWM 
algebra labelled by either the EA'), CA1) or DA') affine Lie algebra. We have also shown that 
the known Baxterizations of the diluti BWM algebra and of the two-colour Temperley-Lieb 
algebra are contained in our Baxterization of the two-colour BWM algebra as special cases. 

Although we have restricted ourselves to the RSOS-type representations, it is 
straightforward to include vertex-type representations. If both A' and A, are of vertex- 
type, one obtains solvable vertex models. Combining a vertex-type and an RSOS-type 
representation results in mixed RSOS-VerleX models. 

Finally, we mention that it  would, of course, be interesting to generalize our work to 
an arbitrary number of colours. Clearly, our method of constructing representations of the 
two-colour algebra can be applied to yield representations of a multi-colour BWM algebra. 
However, we have not succeeded in finding a Baxterization beyond the case of two colours. 
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